psycopg
Psycopg2
It is a package that can be used to integrate PostgreSQL with Jupyter Lab/Notebook
[1, 2]
\n \n \n | \n IndexType | \n Scan | \n EqualitySearch | \n RangeSearch | \n Insert | \n Delete | \n
\n \n \n \n 0 | \n no_index | \n BD | \n 0.5BD | \n BD | \n 2D | \n Search + D | \n
\n \n 1 | \n hash | \n BD(R + 0.125) + 2BRC | \n 2D | \n BD | \n 4D | \n Search + 2D | \n
\n \n 2 | \n btree | \n 1.5BD | \n D$\\log_F$(1.5B) | \n D$\\log_F$(1.5B) + $log_2$(R) * C | \n Search + D | \n Search + D | \n
\n \n
d = {'IndexType':['no_index', 'hash', 'btree'],
'Scan':['BD', 'BD(R + 0.125) + 2BRC', '1.5BD'],
'EqualitySearch': ['0.5BD', '2D', r'D$\log_F$(1.5B)'],
'RangeSearch': ['BD', 'BD', r'D$\log_F$(1.5B) + $log_2$(R) * C'],
'Insert': ['2D', '4D', 'Search + D'],
'Delete': ['Search + D', 'Search + 2D', 'Search + D']
}
pd.DataFrame(d).to_html()
'<table border="1" class="dataframe">\n <thead>\n <tr style="text-align: right;">\n <th></th>\n <th>IndexType</th>\n <th>Scan</th>\n <th>EqualitySearch</th>\n <th>RangeSearch</th>\n <th>Insert</th>\n <th>Delete</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>no_index</td>\n <td>BD</td>\n <td>0.5BD</td>\n <td>BD</td>\n <td>2D</td>\n <td>Search + D</td>\n </tr>\n <tr>\n <th>1</th>\n <td>hash</td>\n <td>BD(R + 0.125) + 2BRC</td>\n <td>2D</td>\n <td>BD</td>\n <td>4D</td>\n <td>Search + 2D</td>\n </tr>\n <tr>\n <th>2</th>\n <td>btree</td>\n <td>1.5BD</td>\n <td>D$\\log_F$(1.5B)</td>\n <td>D$\\log_F$(1.5B) + $log_2$(R) * C</td>\n <td>Search + D</td>\n <td>Search + D</td>\n </tr>\n </tbody>\n</table>'
d = {'eid':[1, 2, 3],'name':['Jackson', 'Jonathan', 'Nabi'], 'title':['Director', 'Professor', 'Engineer'], 'ssn':[None, None, None]}
df = pd.DataFrame(d)
df.to_csv('employees_2.csv', index = False)
/Users/deepaksingh/Desktop/MSDS/RDBMS
# conda environments:
#
base * /Users/deepaksingh/opt/anaconda3
discom /Users/deepaksingh/opt/anaconda3/envs/discom
env-cassandra /Users/deepaksingh/opt/anaconda3/envs/env-cassandra
env-obb /Users/deepaksingh/opt/anaconda3/envs/env-obb
env-tensors /Users/deepaksingh/opt/anaconda3/envs/env-tensors
df = pd.read_csv('Iowa_Fleet_Summary_By_Year__County_And_Vehicle_Type.csv')
df.head()
|
Year |
Year Ending |
County Name |
County FIP |
Feature ID |
Motor Vehicle |
Vehicle Category |
Vehicle Type |
Tonnage |
Registrations |
Annual Fee |
Primary County Lat |
Primary County Long |
Primary County Coordinates |
0 |
2005 |
12/31/2005 |
No County |
NaN |
NaN |
Yes |
Automobile |
Automobile |
NaN |
3711 |
NaN |
NaN |
NaN |
NaN |
1 |
2006 |
12/31/2006 |
No County |
NaN |
NaN |
Yes |
Motor Home |
Motor Home - A |
NaN |
1 |
NaN |
NaN |
NaN |
NaN |
2 |
2008 |
12/31/2008 |
No County |
NaN |
NaN |
Yes |
Automobile |
Automobile |
NaN |
14 |
1021.0 |
NaN |
NaN |
NaN |
3 |
2008 |
12/31/2008 |
Ida |
19093.0 |
465235.0 |
Yes |
Bus |
Bus |
NaN |
5 |
680.0 |
42.386875 |
-95.513496 |
POINT (-95.5134962 42.3868747) |
4 |
2011 |
12/31/2011 |
Jasper |
19099.0 |
465238.0 |
Yes |
Moped |
Moped |
NaN |
198 |
1386.0 |
41.686039 |
-93.053765 |
POINT (-93.053765 41.6860394) |
host = 'localhost'
port = 5432
database = 'msds691'
user = 'postgres'
password = 'postgres'
conn = pg.connect(host = host, port = port, database = database, user = user, password = password)
cur.execute("select * from employees2")
cur.fetchall()
[(1, 'Jackson', 'Director', None),
(2, 'Jonathan', 'Professor', None),
(3, 'Nabi', 'Engineer', None)]
cur.execute("select department_id from departments;")
data = cur.fetchall()
did_list = []
for i in data:
did_list.append(i[0])
did_list
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
<connection object at 0x137a48c10; dsn: 'user=postgres password=xxx dbname=msds691 host=localhost port=5432', closed: 0>